
LumoSQL Single Motivation v1.0

Dan Shearer

17th May 2022

Abstract
This discussion document is for people who know at least roughly

what LumoSQL is, or who have seen the LumoSQL talks. It presents a
unifying theme that links the different inventions, to make it obvious what
LumoSQL is for and what problem it solves. LumoSQL is about rules
enforced by data guarantees. The LumoSQL inventions combine to move
crucial decisionmaking power away from unreliable code and into data
structures. Any application software handling LumoSQL-compatible data
must abide by the rules and guarantees of the LumoSQL data structures.
Software applications often remove power and autonomy from end users,
and LumoSQL gives some of that power back. Some of these data guar-
antees are mathematical, others are institutional, and others are happy
side-effects of unusual software patterns in SQLite and LumoSQL. It is
through these guarantees that LumoSQL addresses some of the biggest
unsolved problems in software.

1

https://lumosql.org/talks.html

Contents
LumoSQL enforces rules by data guarantees. 4

LumoSQL Addresses unsolved problems 4

LumoSQL: Enforcing rules by guarantee 6
What are the guarantees? . 7
What influences on LumoSQL make these guarantees possible? 8

Does the LumoSQL project have the right people? 9

Appendix A - Related topics 10
Collapse of Technology Systems . 10
Concurrent Systemic Declines . 10

2

Figure 1: LumoSQL assumes software development can never be relied on and
is getting worse. (c) Randall Munroe

This cartoon is no more ridiculous than the existence of more than a million
browser User Agent strings for at most a few hundred browsers. Web sites and
browser developers spend a fortune reacting to each other’s changes in User
Agent string handling, emulating each other’s already faked strings which already
impersonate each other. There is no technical reason for this problem, and no
way to fix it without fundamental change.

3

https://bkardell.com/blog/UAGottaBeKidding.html
https://bkardell.com/blog/UAGottaBeKidding.html

LumoSQL enforces rules by data guarantees.
Normally it is the algorithms in software that enforce rules, for example You
do not have permission to read salary information for that person. That rule is
written in just one program, written by just one developer. What if the developer
made a mistake? What if it is your own salary information but the algorithm
doesn’t know that? This is how everyday problems occur that make people say
“computers are just so stupid”.

With LumoSQL, that same salary data is encrypted with several cryptographic
keys. One of those keys will belong to the person whose salary it is, so they can
always read it. Another one will belong to the HR group in the company, so
anyone who has a key that belongs to that group can read the data and update
it. And another read-only key may be issued to the tax department, and that
key stops working as soon as there is a change to the salary data.

LumoSQL Addresses unsolved problems
LumoSQL is a single approach to three very big unsolved problems in software.

Complexity: The logic of society is encoded in software too complex to be
understood in detail by humans.1 Once a development team has committed to
complex technologies there is often no option to reverse that decison. When
there are problems, the tendancy is to abstract, extend, wrap. The intention is
to simplify software development but it has the opposite effect, creating a Big
Ball of Mud2. As an extreme example, the API company Postman3 encourages
Big Balls of Mud by curating over a million APIs for reuse and forking, claiming
in their attractive graphic novel that they are solving problems of complexity.
Unlike the worsening state of software, a data structure does not inherently
become more complex or fragile over time.

Disempowered users: Software is often used for matters of personal autonomy
such as banking, health, private conversations or interactions with government.
No solution exists for software to guarantee it will respect the rights and wishes
of users. Even in 2022 software cannot give any guarantees stronger than a
message on the screen to say “we promise to look after your data and obey the
law”4. This is often not a credible statement due to the power of organisations
concerned, yet users have no alternatives. LumoSQL guarantees that data owners

1Examples include the thousands of constantly-changing cloud APIs and Node.js’ millions
of packages, each with maximum runtime privileges.

2A paper called Big Ball of Mud summarised how bad complex architectures are in 1999,
and the same principle applies today

3recently valued at 5 billion USD
4Very new companies such as Privado offer automated code scanning to companies from

a privacy point of view, but the end user is still required to believe that their supplier has
used Privado, that Privado’s AI is effective, and that their supplier has faithfully implemented
everything Privado advised.

4

https://api-first-world.com/
https://landscape.cncf.io/
https://www.ntousakis.com/p/ccs-demo-2021.pdf
https://www.ntousakis.com/p/ccs-demo-2021.pdf
http://www.laputan.org/pub/foote/mud.pdf
https://www.privado.ai/

have control over access, visibility and portability. These are fundamental human
rights.

Developer knowledge loss: Since approximately 1980 each generation of soft-
ware developers generally understands less about computing fundamentals than
the previous generation, especially on topics of efficiency and reliability. Some
open source communities focus on efficient coding, but this is not mainstream
or typically taught to students. After just 10 or even 5 years, most end user
applications become difficult to understand and often hard to run at all due
to changes in dependencies. LumoSQL data structures are closely related to
mathematics. Mathematics has transmitted knowledge across generations for
4,000 years. We can expect the mathematics of LumoSQL data to be understood
in detail for much longer than 10 years.

There are a few exceptions to the general observation that software is getting
worse. All is not lost!

5

LumoSQL: Enforcing rules by guarantee
Data structures can enforce rules in ways software cannot. Take for example
your personal chat app - who makes sure the internal logic of the app is correct
through its versions and as Android/iOS make changes underneath it? We can’t
rely on the chat app company, because the company’s interests and priorities
are very different to yours. The app’s logic determine how you interact with
your friends, what other third parties can see your chat data, and other things
that might become unexpectedly vital to you at any time. And what about your
chat data backups? On one hand you want backups to be secure from prying
eyes, but on the other unreadable backups are not backups at all.

The LumoSQL approach turns this upside down. We introduce a new stan-
dard secure format, which is only readable if the the chat software obeys the
mathematical rules describing the format. Any LumoSQL-compatible app5 can
tell if the chat data is corrupt or not, because that is a mathematical property
unrelated to the content. You, the user of the chat app, are no longer reliant
on the promises of software developers working for eg WhatsApp or Telegram
to protect your rights. Any one of hundreds of apps can check that your data
is valid. In addition you might authorise a few of those apps to read your chat
data, so you can access your history without involving any code from What-
sApp/Telegram/whoever. But if the data on your phone is copied by criminals
or the police, they cannot read that data unless you give them a key. . . and
even then, you may choose to only give the police a read-only key so you can be
sure no changes have been sneakily made without your knowledge.

Software source code is never a fixed standard6. Unlike software, data layouts
and structures are frequently fixed standards for decades. Advanced mathematics
like checksums, signatures and keys have been used in data structures for decades,
and now LumoSQL is adding multi-user access controls using zero-knowledge
proofs.

5A LumoSQL-compatible app is one that does one or both of (a) understand the Lumions
data format (b) uses the LumoSQL embedded database library, in a similar way that the
SQLite database library is used.

6the TeX program is perhaps the only exception, with just a tiny handful changes in the
last 30 years despite having millions of demanding 21st-century users. If you are reading this
document as a PDF, it was generated using the 1992 version of TeX.

6

https://en.wikipedia.org/wiki/Zero-knowledge_proof#Two_balls_and_the_colour-blind_friend
https://en.wikipedia.org/wiki/Zero-knowledge_proof#Two_balls_and_the_colour-blind_friend
https://lumosql.org/src/lumosql/doc/trunk/doc/rfc/README.md
https://lumosql.org/src/lumosql/doc/trunk/doc/rfc/README.md
https://ctan.org/tex-archive/systems/knuth/dist/tex

What are the guarantees?
Some of the following guarantees may initially seem outrageous or even impossible.
The reason they work is that they are not all related to computer science, but
arise from the collective total of the influences around LumoSQL. These influences
are explained in the next section.

1. No silent corruption: If data has been corrupted, accidentally or delib-
erately, then the data becomes obviously invalid.

2. No unauthorised updates: If data is valid, then it has only been
updated by authorised humans or computers.

3. No unauthorised reads: If data is valid, then only humans or computers
with a valid read key can access the data. If no key is available, then the
data is not recoverable.

4. Futureproof : Data will retain its protections regardless of future changes
in operating systems, computer languages, hardware or software. This is
the most multi-factor of the LumoSQL guarantees.

5. LumoSQL data is always distinguishable: Regardless of any other
factor, valid LumoSQL data cannot be mistaken for any other kind of data.

6. One LumoSQL data item is always uniquely identifiable: Lu-
moSQL data has an ID unique among all data of all kinds, which makes it
difficult to claim that LumoSQL data has been lost.

7. Non-repudiable: If a particular author has created data, then there is
no way for some other author to claim they have created the data. Even if
the original author (or program) has subsequently lost their identity keys,
all work produced by that author remains uniquely identifiable. (This
guarantee also means that LumoSQL cannot deliver strong anonymity.)

8. Data with the same ID will be identical: This follows from the
previous guarantee, and means “no duplicate IDs ever” although there may
be many copies of data.

9. The unique ID includes a version number: Every write action incre-
ments a version number (there is no guarantee that the data content from
a previous version is kept.)

10. Left-over data remains secure: Any left-overs after changes to Lu-
moSQL data will be still be encrypted and therefore no less secure than
they ever were. A practical fact of databases is that pages of obsolete data
are often left on disk after changes.

No guarantee in life is absolute, including ones based on mathematics. But the
LumoSQL guarantees are stronger than anything that software can offer alone.
Data is where enforcement of users rights should begin, not the law and certainly
not software.

7

What influences on LumoSQL make these guarantees pos-
sible?
The first unusual factor is the scale of SQLite. SQLite is essential to billions
of people, millions of developers and thousands of companies. If any addon to
SQLite appeals to even a tiny fraction of the SQLite userbase, that is what
would be massive adoption for any other software.

The scale of SQLite also drives its conservatism, which is what attracts users
such as Airbus. SQLite carefully avoids breaking changes because at SQLite
scale they could be catastrophic. With twenty years of successfully avoiding mass
breakage, SQLite’s conservatism rises to a pretty strong guarantee. LumoSQL
inherits this stability and keeps that same mentality while introducing optional
breaking changes.

Institutional and criminal interests care about SQLite because it is overwhelm-
ingly where the most critical personal data is held outside cloud computing. And
it is the scale of SQLite which meant LumoSQL would never be successful if it
forked SQLite, which lead to the invention of Not Forking. All of these things
and more feed into each other, resulting in LumoSQL being able to promise both
great stability and also never-before-seen security innovations.

• Institutional factors
– US Library of Congress selected the sqlite3 file format as an official

archive format, with one subformat. LumoSQL is likely to add another
subformat for hidden columns.

– UK National Archives also chose sqlite3 as a preservation format, and
others around the world.

– EU Parliament and selected other legislatures worldwide have passed
laws which mandate the mathematics of privacy. LumoSQL aims to
at least meet EU privacy requirements.

– Airbus have asked for binary compatibility until 2050. This is not
unusual for embedded aerospace applications, and there are likely
many other companies with similar requirements.

– Security services and policing often harvest plain text sqlite3 files
(including deleted pages) to harm end users, and LumoSQL encryption
will stop that. However the same institutions are likely to be very
happy with LumoSQL’s UUID which will allow them to track data
flows between devices and clouds, even if they can’t read the con-
tents, and even though LumoSQL explicitly does not offer anonymity
features.

• Mathematical factors
– UUID hash - this is a constant method used to calculate the unique

LumoSQL IDs, and will not change except and until some crypto-
graphic breakthrough means that hash collisions become feasible with
e.g. SHA3-256.

– Signatures and checksums

8

https://www.sqlite.org/fileformat.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000461.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000461.shtml
https://www.nationalarchives.gov.uk/PRONOM/fmt/729
https://library.duke.edu/using/policies/recommended-file-formats-digital-preservation
https://sqlite.org/famous.html
https://twitter.com/copiousfreetime/status/675834543304081409
https://en.wikipedia.org/wiki/Hash_collision

– Attribute based encryption
• Non-technical aspects of SQLite

– Social influences and human habits
– Commercial platforms (Android, Apple, Samsung etc)
– Criminal interests
– Project management

• Science aspects of SQLite and LumoSQL
– Lumion specification and standards process
– Source tree management
– Software development: APIs, internal churn, testing
– Statistics
– Digital forensics
– Not-forking
– Small size of the SQLite codebase
– Even smaller size of LumoSQL non-forked additions to SQLite

Note: Another set of technical facts which cut across all entries in this list.
These include shortcomings in the current sqlite3 format, the nature of metadata
in LumoSQL, and the varying levels of encryption in LumoSQL (row, table,
whole-file). There is also the question of compression, solved by SQLite via the
sqlar format and likely within LumoSQL by per-row dictionary compression.
The items mentioned in this paragraph can be thought of as orthogonal to all of
the factors in the list above.

Does the LumoSQL project have the right peo-
ple?
LumoSQL can’t avoid the disasterous software mistakes listed above unless we
have skills and interests that are not conventional or mainstream.

So far, LumoSQL has team members who are, variously:

• Interested in reducing complexity: We have expertise in creating
simple APIs, the Rust language, Nix and reproducibility, minimalist OS
design, and OS-less computers. This range of interests helps us avoid
classic software complexity traps.

• Promote inter-generational knowledge transfer: We have younger
people, interest and expertise in the topics of equality and human rights,
and a strong interest in formalised knowledge in a university context. These
hopefully combine to promote an environment where younger people can
apply and extend what LumoSQL is pioneering today.

• Want to measure our work: A feature of technological collapse is lack of
knowledge about complexity. Our statistical approach aims to quantify our
measurements, which may allow us to answer questions about complexity
or at least see what the questions should be. How much overhead do
the new security arrangements add? How do different cryptographic

9

https://sqlite.org/sqlar.html

solutions compare? How many SQL operations are there where the crypto
substantially improves access speed?

This seems a very good start, and we can be proud of ourselves. We need more
people, so if you are reading this and are intruiged do please come and say hello
in #lumosql on libera.chat, or contact authors@lumosql.org.

Appendix A - Related topics
It would take months to survey the relevant literature, but I think the following
are the main topics.

Collapse of Technology Systems
Papers on this general topic tend to focus on failures that are not dramatic,
analysing complexity, lines of code, etc. There are vastly more papers promoting
increased complexity than there are on analysing the reasons why software is
getting worse. There are individual practical solutions to create systems that
do not have legacy complexity, however I am not aware of them being part of a
movement to do so.

Sometimes what seems a technology collapse is not. For example tragic failures
of technology systems causing air crashes are not primarily about declining
software quality, or overdependence on software. Humans brains can no more
handle the processing demands of flying a modern jet than they were of landing
on the moon in 1969. A Boeing software error caused the deaths of 346 people.
But all modern jets without exception use fly by wire just like the Lunar Landing
Module did half a century ago, and that is a step forwards not backwards.

Concurrent Systemic Declines
It seems like there are multiple collapses happening at once. Many papers since
1980 or so document decline, diminishing returns or rapid collapse in:

• scientific discoveries (there is constant progress but in most areas it is
incrementalism. This is an entire field of study by itself.)

• technological innovation. While there is also constant progress, and one or
two outstanding counter-examples, researchers in the field often comment
that there are diminishing returns in innovation, and that many new
systems with enhanced features do not offer anything new.

• ecosystems (i.e. the IPCC reports use the word ‘collapse’.)
• democratic processes and liberties (if you are struggling to see declines in

this area worldwide, there is nothing I can say that will help, but there are
specialists whose work you can read on the state of journalistic freedoms,
potentials for violent conflict, rising intolerance etc.)

10

authors@lumosql.org
https://www.theverge.com/2019/3/22/18275736/boeing-737-max-plane-crashes-grounded-problems-info-details-explained-reasons
https://en.wikipedia.org/wiki/Fly-by-wire
https://en.wikipedia.org/wiki/Apollo_Lunar_Module
https://en.wikipedia.org/wiki/Apollo_Lunar_Module
https://phys.org

In 2019 Jonathan Blow presenting in Russia almost summarised the LumoSQL
raison d’être under the topic “Preventing the Fall of Civilisation”. This URL is
offset 18 minutes to where discussion of software starts, but if you are interested
in the Lycurgus Cup then watch the whole thing.

Despite all the bad news, personally I have found specific reasons to feel more
positive about the future of humanity than I have for a long time. And LumoSQL
has the opportunity to make a signficant difference.

ENDS

11

https://www.youtube.com/watch?v=pW-SOdj4Kkk&t=1090s
https://www.youtube.com/watch?v=pW-SOdj4Kkk&t=1090s

	LumoSQL enforces rules by data guarantees.
	LumoSQL Addresses unsolved problems
	LumoSQL: Enforcing rules by guarantee
	What are the guarantees?
	What influences on LumoSQL make these guarantees possible?

	Does the LumoSQL project have the right people?
	Appendix A - Related topics
	Collapse of Technology Systems
	Concurrent Systemic Declines

